Solved

If We Define sˉ1\bar { s } _ { 1 }

Question 73

Multiple Choice

If we define sˉ1\bar { s } _ { 1 } and sˉ2\bar { s } _ { 2 }
As the saving rates in Countries 1 and 2, respectively, dˉ1=dˉ2\bar { d } _ { 1 } = \bar { d } _ { 2 }
As the depreciation rates in Countries 1 and 2, respectively, Aˉ1\bar { A } _ { 1 }
And Aˉ2\bar { A } _ { 2 }
As productivity in Countries 1 and 2, respectively, and the production function per worker is yt=AˉKˉt1/3y _ { t } = \bar { A } \bar { K } _ { t } ^ { 1 / 3 }
In both countries, the Solow model predicts the ratio of GDP per worker in Country 1 relative to Country 2 is:


A) y1y2=(Aˉ1Aˉ2) 3/2×(sˉ1sˉ2) 1/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { A } _ { 1 } } { \bar { A } _ { 2 } } \right) ^ { 3 / 2 } \times \left( \frac { \bar { s } _ { 1 } } { \bar { s } _ { 2 } } \right) ^ { 1 / 2 }
B) y1y2=(dˉ1d2) 3/2×(sˉ1sˉ2) 1/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { d } _ { 1 } } { \overline { d _ { 2 } } } \right) ^ { 3 / 2 } \times \left( \frac { \bar { s } _ { 1 } } { \bar { s } _ { 2 } } \right) ^ { 1 / 2 }
C) y1y2=(sˉ1sˉ2) 3/2×(Aˉ1Aˉ2) 1/3\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { s } _ { 1 } } { \bar { s } _ { 2 } } \right) ^ { 3 / 2 } \times \left( \frac { \bar { A } _ { 1 } } { \bar { A } _ { 2 } } \right) ^ { 1 / 3 }
D) y1y2=(dˉ1dˉ2) 3/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { d } _ { 1 } } { \bar { d } _ { 2 } } \right) ^ { 3 / 2 }
E) y1y2=(sˉ1sˉ2) 1/2\frac { y _ { 1 } ^ { * } } { y _ { 2 } ^ { * } } = \left( \frac { \bar { s } _ { 1 } } { \bar { s } _ { 2 } } \right) ^ { 1 / 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents