Solved

The Solution Of X=(1214)X\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 1 & - 2 \\1 & 4\end{array} \right) \mathbf { X }

Question 2

Multiple Choice

The solution of X=(1214) X\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 1 & - 2 \\1 & 4\end{array} \right) \mathbf { X } is


A) X=c1(21) e2t+c2(11) e3tX = c _ { 1 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(21) e2t+c2(11) e3tX = c _ { 1 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - 3 t }
C) X=c1(21) e2t+c2(11) e3tX = c _ { 1 } \left( \begin{array} { c } - 2 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
D) X=c1(21) e2t+c2(11) e3tX = c _ { 1 } \left( \begin{array} { c } 2 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
E) X=c1(12) e2t+c2(11) e3tX = c _ { 1 } \left( \begin{array} { c } 1 \\- 2\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents