Solved

The Solution of the Integral Equation 0f(x)cos(ax)dx=F(α)\int _ { 0 } ^ { - \infty } f ( x ) \cos ( a x ) d x = F ( \alpha )

Question 1

Multiple Choice

The solution of the integral equation 0f(x) cos(ax) dx=F(α) \int _ { 0 } ^ { - \infty } f ( x ) \cos ( a x ) d x = F ( \alpha ) is


A) f(x) =0F(α) cos(αx) dα/πf ( x ) = \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha / \pi
B) f(x) =20F(α) cos(αx) dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha / \pi
C) f(x) =20F(α) cos(αx) dαf ( x ) = 2 \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha
D) f(x) =0F(α) cos(αx) dαf ( x ) = \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha
E) none of the above

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents