Solved

The Improved Euler's Formula for Solving y=f(x,y),y(xˉ)=yˉy ^ { \prime } = f ( x , y ) , y ( \bar { x } ) = \bar { y }

Question 13

Multiple Choice

The improved Euler's formula for solving y=f(x,y) ,y(xˉ) =yˉy ^ { \prime } = f ( x , y ) , y ( \bar { x } ) = \bar { y } is


A) yn+1=ynf(xn,yn) ,y0=yˉ,n=0,1,2,y _ { n + 1 } = y _ { n } - f \left( x _ { n } , y _ { n } \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots
B) yn+1=ynhf(xn,yn) ,y0=yˉ,n=0,1,2,y _ { n + 1 } = y _ { n } - h f \left( x _ { n } , y _ { n } \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots
C) yn+1=yn+hf(xn,yn) ,y0=yˉ,n=0,1,2,y _ { n + 1 } = y _ { n } + h f \left( x _ { n } , y _ { n } \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots
D) yn+1=yn+(f(xn,yn) +f(xn+1,yn+1) /2) ,y0=yˉ,n=0,1,2, where yn+1y _ { n + 1 } = y _ { n } + \left( f \left( x _ { n } , y _ { n } \right) + f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right) / 2 \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots \text { where } y _ { n + 1 } ^ { * }
is predicted from Euler's formula
E) yn+1=yn+h(f(xn,yn) +f(xn+1,yn+1) /2) ,y0=yˉ,n=0,1,2, where yn+1y _ { n + 1 } = y _ { n } + h \left( f \left( x _ { n } , y _ { n } \right) + f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right) / 2 \right) , y _ { 0 } = \bar { y } , n = 0,1,2 , \ldots \text { where } y _ { n + 1 } ^ { * }
is predicted from Euler's formula

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents