Solved

Using the Value Of yn+1y _ { n + 1 } ^ { * }

Question 9

Multiple Choice

Using the value of yn+1y _ { n + 1 } ^ { * } from the previous problem, the Adams-Moulton corrector value for the solution of yt=f(x,y) ,y(x0) =y0y ^ { t } = f ( x , y ) , y \left( x _ { 0 } \right) = y _ { 0 } is


A) yn+1=yn+h(9yn+119yn+5yn1+yn2) /24, where yn+1=f(xn+1,yn+1) y _ { n + 1 } = y _ { n } + h \left( 9 y _ { n + 1 } ^ { \prime } - 19 y _ { n } ^ { \prime } + 5 y _ { n - 1 } ^ { \prime } + y _ { n - 2 } ^ { \prime } \right) / 24 , \text { where } y _ { n + 1 } ^ { \prime } = f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right)
B) yn+1=yn+h(9yn+1+19yn+5yn1+yn2) /34, where yn+1=f(xn+1,yn+1) y _ { n + 1 } = y _ { n } + h \left( 9 y _ { n + 1 } ^ { \prime } + 19 y _ { n } ^ { \prime } + 5 y _ { n - 1 } ^ { \prime } + y _ { n - 2 } ^ { \prime } \right) / 34 , \text { where } y _ { n + 1 } ^ { \prime } = f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right)
C) yn+1=yn+h(9yn+1+19yn5yn1yn2) /24, where yn+1=f(xn+1,yn+1) y _ { n + 1 } = y _ { n } + h \left( 9 y _ { n + 1 } ^ { \prime } + 19 y _ { n } ^ { \prime } - 5 y _ { n - 1 } ^ { \prime } - y _ { n - 2 } ^ { \prime } \right) / 24 , \text { where } y _ { n + 1 } ^ { \prime } = f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right)
D) yn+1=yn+h(9yn+1+19yn5yn1+yn2) /24, where yn+1=f(xn+1,yn+1) y _ { n + 1 } = y _ { n } + h \left( 9 y _ { n + 1 } ^ { \prime } + 19 y _ { n } ^ { \prime } - 5 y _ { n - 1 } ^ { \prime } + y _ { n - 2 } ^ { \prime } \right) / 24 , \text { where } y _ { n + 1 } ^ { \prime } = f \left( x _ { n + 1 } , y _ { n + 1 } ^ { * } \right)
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents