Solved

In Each of the Given Systems, X and Y Are {dxdt=0.01x+0.0002xydydt=0.2y0.004xy\left\{ \begin{array} { l } \frac { d x } { d t } = - 0.01 x + 0.0002 x y \\\frac { d y } { d t } = - 0.2 y - 0.004 x y\end{array} \right.

Question 18

Essay

In each of the given systems, x and y are populations of two different species which are solutions to the differential equations. For each system, describe how the species interact with one another (for example, do they compete for the same resources, or cooperate for mutual benefit?) and suggest a pair of species that might interact in a manner consistent with the given system of equations.(a) {dxdt=0.01x+0.0002xydydt=0.2y0.004xy\left\{ \begin{array} { l } \frac { d x } { d t } = - 0.01 x + 0.0002 x y \\\frac { d y } { d t } = - 0.2 y - 0.004 x y\end{array} \right. (d) {dxdt=0.01x(10.02x)+0.1xydydt=0.02y(10.01y)+0.01xy\left\{ \begin{array} { l } \frac { d x } { d t } = 0.01 x ( 1 - 0.02 x ) + 0.1 x y \\\frac { d y } { d t } = 0.02 y ( 1 - 0.01 y ) + 0.01 x y\end{array} \right. (b) {dxdt=0.01x+0.0002xydydt=0.2y0.004xy\left\{ \begin{array} { l } \frac { d x } { d t } = 0.01 x + 0.0002 x y \\\frac { d y } { d t } = 0.2 y - 0.004 x y\end{array} \right. (e) {dxdt=0.08x(10.0001x)0.002xydydt=0.02y+0.002xy\left\{ \begin{array} { l } \frac { d x } { d t } = 0.08 x ( 1 - 0.0001 x ) - 0.002 x y \\\frac { d y } { d t } = - 0.02 y + 0.002 x y\end{array} \right. (c) {dxdt=0.01x+0.0002xydydt=0.2y+0.004xy\left\{ \begin{array} { l } \frac { d x } { d t } = 0.01 x + 0.0002 x y \\\frac { d y } { d t } = 0.2 y + 0.004 x y\end{array} \right. (f) {dxdt=0.01xdydt=0.02y\left\{ \begin{array} { l } \frac { d x } { d t } = - 0.01 x \\\frac { d y } { d t } = - 0.02 y\end{array} \right.

Correct Answer:

verifed

Verified

(a) Predator-prey system blured image for example, r...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents