Solved

The Following Table Shows the Annual Revenues (In Millions of Dollars)of

Question 112

Essay

The following table shows the annual revenues (in millions of dollars)of a pharmaceutical company over the period 1990-2011. The following table shows the annual revenues (in millions of dollars)of a pharmaceutical company over the period 1990-2011.   The autoregressive models of order 1 and 2,y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + ε<sub>t</sub>,and y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + β<sub>2</sub>y<sub>t - 2</sub> + ε<sub>t</sub>,were applied on the time series to make revenue forecasts.The relevant parts of Excel regression outputs are given below. Model AR(1):     Model AR(2):     When for AR(1),H<sub>0</sub>: β<sub>0</sub> = 0 is tested against H<sub>A</sub>: β<sub>0</sub> ≠ 0,the p-value of this t test shown by Excel output is 0.9590.This could suggest that the model y<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1 </sub>+ ε<sub>t</sub> might be an alternative to the AR(1)model y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>.Excel partial output for this simplified model is as follows:     (Use Regression in Data Analysis of Excel. ) Compare the autoregressive models y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>;y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + β<sub>2</sub>y<sub>t</sub><sub>-2 </sub>+ ε<sub>t</sub>,andy<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + ε<sub>t</sub>,through the use of MSE and MAD. The autoregressive models of order 1 and 2,yt = β0 + β1yt - 1 + εt,and yt = β0 + β1yt - 1 + β2yt - 2 + εt,were applied on the time series to make revenue forecasts.The relevant parts of Excel regression outputs are given below.
Model AR(1): The following table shows the annual revenues (in millions of dollars)of a pharmaceutical company over the period 1990-2011.   The autoregressive models of order 1 and 2,y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + ε<sub>t</sub>,and y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + β<sub>2</sub>y<sub>t - 2</sub> + ε<sub>t</sub>,were applied on the time series to make revenue forecasts.The relevant parts of Excel regression outputs are given below. Model AR(1):     Model AR(2):     When for AR(1),H<sub>0</sub>: β<sub>0</sub> = 0 is tested against H<sub>A</sub>: β<sub>0</sub> ≠ 0,the p-value of this t test shown by Excel output is 0.9590.This could suggest that the model y<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1 </sub>+ ε<sub>t</sub> might be an alternative to the AR(1)model y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>.Excel partial output for this simplified model is as follows:     (Use Regression in Data Analysis of Excel. ) Compare the autoregressive models y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>;y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + β<sub>2</sub>y<sub>t</sub><sub>-2 </sub>+ ε<sub>t</sub>,andy<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + ε<sub>t</sub>,through the use of MSE and MAD. The following table shows the annual revenues (in millions of dollars)of a pharmaceutical company over the period 1990-2011.   The autoregressive models of order 1 and 2,y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + ε<sub>t</sub>,and y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + β<sub>2</sub>y<sub>t - 2</sub> + ε<sub>t</sub>,were applied on the time series to make revenue forecasts.The relevant parts of Excel regression outputs are given below. Model AR(1):     Model AR(2):     When for AR(1),H<sub>0</sub>: β<sub>0</sub> = 0 is tested against H<sub>A</sub>: β<sub>0</sub> ≠ 0,the p-value of this t test shown by Excel output is 0.9590.This could suggest that the model y<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1 </sub>+ ε<sub>t</sub> might be an alternative to the AR(1)model y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>.Excel partial output for this simplified model is as follows:     (Use Regression in Data Analysis of Excel. ) Compare the autoregressive models y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>;y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + β<sub>2</sub>y<sub>t</sub><sub>-2 </sub>+ ε<sub>t</sub>,andy<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + ε<sub>t</sub>,through the use of MSE and MAD. Model AR(2): The following table shows the annual revenues (in millions of dollars)of a pharmaceutical company over the period 1990-2011.   The autoregressive models of order 1 and 2,y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + ε<sub>t</sub>,and y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + β<sub>2</sub>y<sub>t - 2</sub> + ε<sub>t</sub>,were applied on the time series to make revenue forecasts.The relevant parts of Excel regression outputs are given below. Model AR(1):     Model AR(2):     When for AR(1),H<sub>0</sub>: β<sub>0</sub> = 0 is tested against H<sub>A</sub>: β<sub>0</sub> ≠ 0,the p-value of this t test shown by Excel output is 0.9590.This could suggest that the model y<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1 </sub>+ ε<sub>t</sub> might be an alternative to the AR(1)model y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>.Excel partial output for this simplified model is as follows:     (Use Regression in Data Analysis of Excel. ) Compare the autoregressive models y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>;y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + β<sub>2</sub>y<sub>t</sub><sub>-2 </sub>+ ε<sub>t</sub>,andy<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + ε<sub>t</sub>,through the use of MSE and MAD. The following table shows the annual revenues (in millions of dollars)of a pharmaceutical company over the period 1990-2011.   The autoregressive models of order 1 and 2,y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + ε<sub>t</sub>,and y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + β<sub>2</sub>y<sub>t - 2</sub> + ε<sub>t</sub>,were applied on the time series to make revenue forecasts.The relevant parts of Excel regression outputs are given below. Model AR(1):     Model AR(2):     When for AR(1),H<sub>0</sub>: β<sub>0</sub> = 0 is tested against H<sub>A</sub>: β<sub>0</sub> ≠ 0,the p-value of this t test shown by Excel output is 0.9590.This could suggest that the model y<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1 </sub>+ ε<sub>t</sub> might be an alternative to the AR(1)model y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>.Excel partial output for this simplified model is as follows:     (Use Regression in Data Analysis of Excel. ) Compare the autoregressive models y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>;y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + β<sub>2</sub>y<sub>t</sub><sub>-2 </sub>+ ε<sub>t</sub>,andy<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + ε<sub>t</sub>,through the use of MSE and MAD. When for AR(1),H0: β0 = 0 is tested against HA: β0 ≠ 0,the p-value of this t test shown by Excel output is 0.9590.This could suggest that the model yt = β1yt-1 + εt might be an alternative to the AR(1)model yt = β0 + β1yt-1 + εt.Excel partial output for this simplified model is as follows: The following table shows the annual revenues (in millions of dollars)of a pharmaceutical company over the period 1990-2011.   The autoregressive models of order 1 and 2,y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + ε<sub>t</sub>,and y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + β<sub>2</sub>y<sub>t - 2</sub> + ε<sub>t</sub>,were applied on the time series to make revenue forecasts.The relevant parts of Excel regression outputs are given below. Model AR(1):     Model AR(2):     When for AR(1),H<sub>0</sub>: β<sub>0</sub> = 0 is tested against H<sub>A</sub>: β<sub>0</sub> ≠ 0,the p-value of this t test shown by Excel output is 0.9590.This could suggest that the model y<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1 </sub>+ ε<sub>t</sub> might be an alternative to the AR(1)model y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>.Excel partial output for this simplified model is as follows:     (Use Regression in Data Analysis of Excel. ) Compare the autoregressive models y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>;y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + β<sub>2</sub>y<sub>t</sub><sub>-2 </sub>+ ε<sub>t</sub>,andy<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + ε<sub>t</sub>,through the use of MSE and MAD. The following table shows the annual revenues (in millions of dollars)of a pharmaceutical company over the period 1990-2011.   The autoregressive models of order 1 and 2,y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + ε<sub>t</sub>,and y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t - </sub><sub>1</sub> + β<sub>2</sub>y<sub>t - 2</sub> + ε<sub>t</sub>,were applied on the time series to make revenue forecasts.The relevant parts of Excel regression outputs are given below. Model AR(1):     Model AR(2):     When for AR(1),H<sub>0</sub>: β<sub>0</sub> = 0 is tested against H<sub>A</sub>: β<sub>0</sub> ≠ 0,the p-value of this t test shown by Excel output is 0.9590.This could suggest that the model y<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1 </sub>+ ε<sub>t</sub> might be an alternative to the AR(1)model y<sub>t</sub> = β<sub>0</sub> + β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>.Excel partial output for this simplified model is as follows:     (Use Regression in Data Analysis of Excel. ) Compare the autoregressive models y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t-1</sub> + ε<sub>t</sub>;y<sub>t</sub> = β<sub>0 </sub>+ β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + β<sub>2</sub>y<sub>t</sub><sub>-2 </sub>+ ε<sub>t</sub>,andy<sub>t</sub> = β<sub>1</sub>y<sub>t</sub><sub>-1</sub> + ε<sub>t</sub>,through the use of MSE and MAD. (Use Regression in Data Analysis of Excel. )
Compare the autoregressive models yt = β0 + β1yt-1 + εt;yt = β0 + β1yt-1 + β2yt-2 + εt,andyt = β1yt-1 + εt,through the use of MSE and MAD.

Correct Answer:

verifed

Verified

For each of regression equations: blured image = b0 + ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents