Solved

Assume That Y Is Normally Distributed N(μ,σ2)N \left( \mu , \sigma ^ { 2 } \right)

Question 1

Multiple Choice

Assume that Y is normally distributed N(μ,σ2) N \left( \mu , \sigma ^ { 2 } \right) To find Pr(c1Yc2) \operatorname { Pr } \left( c _ { 1 } \leq Y \leq c _ { 2 } \right) where c1<c2c _ { 1 } < c _ { 2 } and di=ciμσd _ { i } = \frac { c _ { i } - \mu } { \sigma } , you need to calculate Pr(d1Zd2) =\operatorname { Pr } \left( d _ { 1 } \leq Z \leq d _ { 2 } \right) =


A) Φ(d2) Φ(d1) \Phi \left( d _ { 2 } \right) - \Phi \left( d _ { 1 } \right)
B) Φ(1.96) Φ(1.96) \Phi ( 1.96 ) - \Phi ( - 1.96 )
C) Φ(d2) (1Φ(d1) ) \Phi \left( d _ { 2 } \right) - \left( 1 - \Phi \left( d _ { 1 } \right) \right)
D) 1(Φ(d2) Φ(d1) ) 1 - \left( \Phi \left( d _ { 2 } \right) - \Phi \left( d _ { 1 } \right) \right)

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents