Solved

The Following MINITAB Output Presents a Multiple Regression Equatior y^\hat { y }

Question 42

Multiple Choice

The following MINITAB output presents a multiple regression equatior y^\hat { y } =b0+b1x1+b2x2+b3x3+b4x4
The regression equation is
Y=4.7712+0.2662X1+1.2710X21.1349X31.8545X4\mathrm { Y } = 4.7712 + 0.2662 \mathrm { X } 1 + 1.2710 \mathrm { X } 2 - 1.1349 \mathrm { X } 3 - 1.8545 \mathrm { X } 4
 Predictor  Coef  SE Coef  T P Constant 4.77120.76480.928000.3280X10.26620.80360.937400.3570X21.27100.84511.741700.0830X31.13490.63182.949900.0080X41.85450.67533.272000.0020\begin{array}{lllll}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \mathrm{P} \\\text { Constant } & 4.7712 & 0.7648 & 0.92800 & 0.3280 \\\mathrm{X} 1 & 0.2662 & 0.8036 & -0.93740 & 0.3570 \\\mathrm{X} 2 & 1.2710 & 0.8451 & 1.74170 & 0.0830 \\\mathrm{X} 3 & -1.1349 & 0.6318 & -2.94990 & 0.0080 \\\mathrm{X} 4 & -1.8545 & 0.6753 & 3.27200 & 0.0020\end{array}

 The following MINITAB output presents a multiple regression equatior  \hat { y } =b<sub>0</sub>+b<sub>1</sub>x<sub>1</sub>+b<sub>2</sub>x<sub>2</sub>+b<sub>3</sub>x<sub>3</sub>+b<sub>4</sub>x<sub>4</sub> The regression equation is  \mathrm { Y } = 4.7712 + 0.2662 \mathrm { X } 1 + 1.2710 \mathrm { X } 2 - 1.1349 \mathrm { X } 3 - 1.8545 \mathrm { X } 4   \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \mathrm{P} \\ \text { Constant } & 4.7712 & 0.7648 & 0.92800 & 0.3280 \\ \mathrm{X} 1 & 0.2662 & 0.8036 & -0.93740 & 0.3570 \\ \mathrm{X} 2 & 1.2710 & 0.8451 & 1.74170 & 0.0830 \\ \mathrm{X} 3 & -1.1349 & 0.6318 & -2.94990 & 0.0080 \\ \mathrm{X} 4 & -1.8545 & 0.6753 & 3.27200 & 0.0020 \end{array}       \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 624.2 & 156.1 & 9.8797 & 0.003 \\ \text { Residual Error } & 40 & 633.7 & 15.8 & & \\ \text { Total } & 44 & 1,257.9 & & & \\ \hline \end{array}    It is desired to drop one of the explanatory variables. Which of the following is the most appropriate action? A)  Drop x<sub>4</sub>, then see whether R<sup>2</sup> increases B)  Drop  x<sub>1</sub>, then see whether R<sup>2</sup> increases C)  Drop x<sub>4</sub>, then see whether adjusted R<sup>2</sup> increases D)  Drop  x<sub>1</sub>, then see whether adjusted R<sup>2</sup> increases

 Analysis of Variance \text { Analysis of Variance }
 Source  DF  SS  MS  F  P  Regression 4624.2156.19.87970.003 Residual Error 40633.715.8 Total 441,257.9\begin{array}{lccccc}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 4 & 624.2 & 156.1 & 9.8797 & 0.003 \\\text { Residual Error } & 40 & 633.7 & 15.8 & & \\\text { Total } & 44 & 1,257.9 & & & \\\hline\end{array}


It is desired to drop one of the explanatory variables. Which of the following is the most appropriate action?


A) Drop x4, then see whether R2 increases
B) Drop x1, then see whether R2 increases
C) Drop x4, then see whether adjusted R2 increases
D) Drop x1, then see whether adjusted R2 increases

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents