Solved

The Following MINITAB Output Presents a Multiple Regression Equation y=b0+b1x1+b2x2+b3x3y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }

Question 46

True/False

The following MINITAB output presents a multiple regression equation y=b0+b1x1+b2x2+b3x3y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 } +b4x4+ b _ { 4 } x _ { 4 } .
The regression equation is
Y=3.9695+1.4577X11.7859X2+0.7686X3+0.0777X4\mathrm { Y } = 3.9695 + 1.4577 \mathrm { X } 1 - 1.7859 \mathrm { X } 2 + 0.7686 \mathrm { X } 3 + 0.0777 \mathrm { X } 4
 Predictor  Coef  SE Coef  T  P  Constant 3.96950.87850.92990.327 X1 1.45770.60343.51070.003 X2 1.78590.73023.11480.005 X3 0.76860.67321.92940.088 X4 0.07770.75691.07820.352\begin{array}{lllll}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & 3.9695 & 0.8785 & 0.9299 & 0.327 \\\text { X1 } & 1.4577 & 0.6034 & 3.5107 & 0.003 \\\text { X2 } & -1.7859 & 0.7302 & -3.1148 & 0.005 \\\text { X3 } & 0.7686 & 0.6732 & 1.9294 & 0.088 \\\text { X4 } & 0.0777 & 0.7569 & -1.0782 & 0.352\end{array}
 The following MINITAB output presents a multiple regression equation  y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }   + b _ { 4 } x _ { 4 } . The regression equation is  \mathrm { Y } = 3.9695 + 1.4577 \mathrm { X } 1 - 1.7859 \mathrm { X } 2 + 0.7686 \mathrm { X } 3 + 0.0777 \mathrm { X } 4   \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 3.9695 & 0.8785 & 0.9299 & 0.327 \\ \text { X1 } & 1.4577 & 0.6034 & 3.5107 & 0.003 \\ \text { X2 } & -1.7859 & 0.7302 & -3.1148 & 0.005 \\ \text { X3 } & 0.7686 & 0.6732 & 1.9294 & 0.088 \\ \text { X4 } & 0.0777 & 0.7569 & -1.0782 & 0.352 \end{array}        \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 1,148.7 & 287.2 & 9.0031 & 0.003 \\ \text { Residual Error } & 34 & 1,083.9 & 31.9 & & \\ \text { Total } & 38 & 2,232.6 & & & \\ \hline \end{array}   Is the model useful for prediction? Use the  = 0.05 level.



 Analysis of Variance \text { Analysis of Variance }
 Source  DF  SS  MS  F  P  Regression 41,148.7287.29.00310.003 Residual Error 341,083.931.9 Total 382,232.6\begin{array}{lccccc}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 4 & 1,148.7 & 287.2 & 9.0031 & 0.003 \\\text { Residual Error } & 34 & 1,083.9 & 31.9 & & \\\text { Total } & 38 & 2,232.6 & & & \\\hline\end{array}
Is the model useful for prediction? Use the  = 0.05 level.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents