Solved

The Following MINITAB Output Presents a Multiple Regression Equation y^=b0+b1x1+b2x2+b3x3\hat { y } = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }

Question 48

Multiple Choice

The following MINITAB output presents a multiple regression equation y^=b0+b1x1+b2x2+b3x3\hat { y } = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 } +b4x4+ b _ { 4 } x _ { 4 } .
The regression equation is
Y=1.9568+1.7369X1+1.1099X21.2672X3+1.6080X4\mathrm { Y } = 1.9568 + 1.7369 \mathrm { X } 1 + 1.1099 \mathrm { X } 2 - 1.2672 \mathrm { X } 3 + 1.6080 \mathrm { X } 4
 Predictor  Coef  SE Coef  T  P  Constant 1.95680.82481.12770.345 X1 1.73690.79803.42960.004 X2 1.10990.75003.25290.006 X3 1.26720.75341.87300.076 X4 1.60800.87330.93280.349\begin{array}{lllll}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & 1.9568 & 0.8248 & 1.1277 & 0.345 \\\text { X1 } & 1.7369 & 0.7980 & 3.4296 & 0.004 \\\text { X2 } & 1.1099 & 0.7500 & -3.2529 & 0.006 \\\text { X3 } & -1.2672 & 0.7534 & 1.8730 & 0.076 \\\text { X4 } & 1.6080 & 0.8733 & -0.9328 & 0.349\end{array}
 The following MINITAB output presents a multiple regression equation  \hat { y } = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }   + b _ { 4 } x _ { 4 } . The regression equation is  \mathrm { Y } = 1.9568 + 1.7369 \mathrm { X } 1 + 1.1099 \mathrm { X } 2 - 1.2672 \mathrm { X } 3 + 1.6080 \mathrm { X } 4   \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 1.9568 & 0.8248 & 1.1277 & 0.345 \\ \text { X1 } & 1.7369 & 0.7980 & 3.4296 & 0.004 \\ \text { X2 } & 1.1099 & 0.7500 & -3.2529 & 0.006 \\ \text { X3 } & -1.2672 & 0.7534 & 1.8730 & 0.076 \\ \text { X4 } & 1.6080 & 0.8733 & -0.9328 & 0.349 \end{array}      \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 503.9 & 126.0 & 5.0806 & 0.003 \\ \text { Residual Error } & 40 & 990.4 & 24.8 & & \\ \text { Total } & 44 & 1,494.3 & & & \\ \hline \end{array}   Predict the value of  \mathrm { y }  when  x _ { 1 } = 1 , x _ { 2 } = 2 , x _ { 3 } = 3 , x _ { 4 } = 6  A)  9.798 B)  9.8031 C)  10.6228 D)  11.7599

 Analysis of Variance \text { Analysis of Variance }
 Source  DF  SS  MS  F  P  Regression 4503.9126.05.08060.003 Residual Error 40990.424.8 Total 441,494.3\begin{array}{lccccc}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 4 & 503.9 & 126.0 & 5.0806 & 0.003 \\\text { Residual Error } & 40 & 990.4 & 24.8 & & \\\text { Total } & 44 & 1,494.3 & & & \\\hline\end{array}

Predict the value of y\mathrm { y } when x1=1,x2=2,x3=3,x4=6x _ { 1 } = 1 , x _ { 2 } = 2 , x _ { 3 } = 3 , x _ { 4 } = 6


A) 9.798
B) 9.8031
C) 10.6228
D) 11.7599

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents