Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Business
Study Set
Introduction to Management Science
Quiz 5: What-If Analysis for Linear Programming
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 21
True/False
Managerial decisions regarding right-hand sides are often interrelated and so frequently are considered simultaneously.
Question 22
Multiple Choice
If a change is made in only one of the objective function coefficients:
Question 23
Multiple Choice
What-if analysis can: I. be done graphically for problems with two decision variables. II. reduce a manager's confidence in the model that has been formulated. III. increase a manager's confidence in the model that has been formulated.
Question 24
Multiple Choice
Variable cells
Cell
Name
Final
Value
Reduced
Cost
Objective
Codficient
Allowable
Increase
Allowuble
Decrease
$B$6
Activity 1
3
0
30
23
17
$C$6
Activity 2
6
0
40
50
10
$D$6
Activity 3
0
−
7
20
7
1
E
+
30
\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Cell
$B$6
$C$6
$D$6
Name
Activity 1
Activity 2
Activity 3
Final
Value
3
6
0
Reduced
Cost
0
0
−
7
Objective
Codficient
30
40
20
Allowable
Increase
23
50
7
Allowuble
Decrease
17
10
1
E
+
30
Constraints
Cell
Name
Final
Value
Shadow
Price
Constraint
R.H. Side
Allowable
Increase
Allowable
Decrease
$
E
$
2
Resource A
20
7.78
20
10
12.5
$
E
$
3
Resource B
30
6
30
50
10
$
E
$
4
Resource C
18
0
40
1
E
+
30
22
\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
Cell
$
E
$2
$
E
$3
$
E
$4
Name
Resource A
Resource B
Resource C
Final
Value
20
30
18
Shadow
Price
7.78
6
0
Constraint
R.H. Side
20
30
40
Allowable
Increase
10
50
1
E
+
30
Allowable
Decrease
12.5
10
22
What is the allowable range for the right-hand-side for Resource C?
Question 25
True/False
A parameter analysis report can be used to easily investigate the changes in any number of data cells.
Question 26
Multiple Choice
In a problem with 4 decision variables, the 100% rule indicates that each objective coefficient can be safely increased by what amount without invalidating the current optimal solution?
Question 27
Multiple Choice
Variable cells
Cell
Name
Final
Value
Reduced
Cost
Objective
Codficient
Allowable
Increase
Allowuble
Decrease
$B$6
Activity 1
3
0
30
23
17
$C$6
Activity 2
6
0
40
50
10
$D$6
Activity 3
0
−
7
20
7
1
E
+
30
\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Cell
$B$6
$C$6
$D$6
Name
Activity 1
Activity 2
Activity 3
Final
Value
3
6
0
Reduced
Cost
0
0
−
7
Objective
Codficient
30
40
20
Allowable
Increase
23
50
7
Allowuble
Decrease
17
10
1
E
+
30
Constraints
Cell
Name
Final
Value
Shadow
Price
Constraint
R.H. Side
Allowable
Increase
Allowable
Decrease
$
E
$
2
Resource A
20
7.78
20
10
12.5
$
E
$
3
Resource B
30
6
30
50
10
$
E
$
4
Resource C
18
0
40
1
E
+
30
22
\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
Cell
$
E
$2
$
E
$3
$
E
$4
Name
Resource A
Resource B
Resource C
Final
Value
20
30
18
Shadow
Price
7.78
6
0
Constraint
R.H. Side
20
30
40
Allowable
Increase
10
50
1
E
+
30
Allowable
Decrease
12.5
10
22
If the coefficient for Activity 3 in the objective function changes to $30, then the objective function value:
Question 28
Multiple Choice
Variable cells
Cell
Name
Final
Value
Reduced
Cost
Objective
Codficient
Allowable
Increase
Allowuble
Decrease
$B$6
Activity 1
3
0
30
23
17
$C$6
Activity 2
6
0
40
50
10
$D$6
Activity 3
0
−
7
20
7
1
E
+
30
\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Cell
$B$6
$C$6
$D$6
Name
Activity 1
Activity 2
Activity 3
Final
Value
3
6
0
Reduced
Cost
0
0
−
7
Objective
Codficient
30
40
20
Allowable
Increase
23
50
7
Allowuble
Decrease
17
10
1
E
+
30
Constraints
Cell
Name
Final
Value
Shadow
Price
Constraint
R.H. Side
Allowable
Increase
Allowable
Decrease
$
E
$
2
Resource A
20
7.78
20
10
12.5
$
E
$
3
Resource B
30
6
30
50
10
$
E
$
4
Resource C
18
0
40
1
E
+
30
22
\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
Cell
$
E
$2
$
E
$3
$
E
$4
Name
Resource A
Resource B
Resource C
Final
Value
20
30
18
Shadow
Price
7.78
6
0
Constraint
R.H. Side
20
30
40
Allowable
Increase
10
50
1
E
+
30
Allowable
Decrease
12.5
10
22
If the coefficient for Activity 1 in the objective function changes to $40, then the objective function value:
Question 29
True/False
A parameter analysis report can only be used to investigate changes in a single data cell at a time.
Question 30
Multiple Choice
variable cells
Cell
Name
Final
Value
Reduced
Cost
Objective
Codficient
Allowable
Increase
Allowuble
Decrease
$B$6
Activity 1
3
0
30
23
17
$C$6
Activity 2
6
0
40
50
10
$D$6
Activity 3
0
−
7
20
7
1
E
+
30
\begin{array} { | r | r | r | r | r | r | r | } \hline \text { Cell } & \text { Name } & \begin{array} { c } \text { Final } \\\text { Value }\end{array} & \begin{array} { c } \text { Reduced } \\\text { Cost }\end{array} & \begin{array} { c } \text { Objective } \\\text { Codficient }\end{array} & \begin{array} { c } \text { Allowable } \\\text { Increase }\end{array} & \begin{array} { c } \text { Allowuble } \\\text { Decrease }\end{array} \\\hline \text { \$B\$6 } & \text { Activity 1 } & 3 & 0 & 30 & 23 & 17 \\\hline \text { \$C\$6 } & \text { Activity 2 } & 6 & 0 & 40 & 50 & 10 \\\hline \text { \$D\$6 } & \text { Activity 3 } & 0 & - 7 & 20 & 7 & 1 \mathrm { E } + 30 \\\hline\end{array}
Cell
$B$6
$C$6
$D$6
Name
Activity 1
Activity 2
Activity 3
Final
Value
3
6
0
Reduced
Cost
0
0
−
7
Objective
Codficient
30
40
20
Allowable
Increase
23
50
7
Allowuble
Decrease
17
10
1
E
+
30
Constraints
Cell
Name
Final
Value
Shadow
Price
Constraint
R.H. Side
Allowable
Increase
Allowable
Decrease
$
E
$
2
Resource A
20
7.78
20
10
12.5
$
E
$
3
Resource B
30
6
30
50
10
$
E
$
4
Resource C
18
0
40
1
E
+
30
22
\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & {\begin{array}{c}\text { Allowable } \\\text { Increase }\end{array}} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Resource A } & 20 & 7.78 & 20 & 10 & 12.5 \\\hline \$ \mathrm{E} \$ 3 & \text { Resource B } & 30 & 6 & 30 & 50 & 10 \\\hline \$ \mathrm{E} \$ 4 & \text { Resource C } & 18 & \mathrm{0} & 40 & 1 \mathrm{E}+30 & 22\\\hline\end{array}
Cell
$
E
$2
$
E
$3
$
E
$4
Name
Resource A
Resource B
Resource C
Final
Value
20
30
18
Shadow
Price
7.78
6
0
Constraint
R.H. Side
20
30
40
Allowable
Increase
10
50
1
E
+
30
Allowable
Decrease
12.5
10
22
What is the optimal objective function value for this problem?
Question 31
True/False
If the sum of the percentage changes of the right-hand sides does not exceed 100%, then the solution will definitely remain optimal.
Question 32
Multiple Choice
Which of the following are benefits of what-if analysis?
Question 33
Multiple Choice
In linear programming, what-if analysis is associated with determining the effect of changing: I. objective function coefficients. II. right-hand side values of constraints. III. decision variable values.