Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Statistics
Study Set
Operations and Supply Chain Management Study Set 1
Quiz 9: Forecasting
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Question 41
Multiple Choice
McMahon and Tate advertising company is interested in an appropriate mix of print, radio, and television ads for their new client. Darrin Stevens performs a multiple regression on the effects of dollars spent on each type of media on dollars of sales of product. Darrin uses data from the most recent advertising campaigns and develops the following equation: y = 254,215 + 6.79 × Print - 1.4 × Radio + 16.87 × Television The r-squared statistic is 0.77 and all coefficients are significant. Which of the following statements is best?
Question 42
Multiple Choice
A poultry farmer that dabbles in statistics is interested in exploring the relationship between two types of feed (layer pellets and scratch) , water, and the output of his laying hens. For ten days he records the number of ounces of layer pellets and scratch the hens consume and the number of fluid ounces of water and tracks the number of eggs that are produced. After running a multiple regression model, he obtains the following report. What is the best interpretation of these statistics?
Coefficients
Std Error
t
Stat
P
-value
Intercept
1.256
1.249
1.006
0.353
Scratch
0.185
0.032
5.714
0.001
Layer Pellets
0.295
0.026
11.539
0.000
Water
0.149
0.041
3.587
0.012
\begin{array} { | l | c | c | c | c | } \hline & \text { Coefficients } & \text { Std Error } & t \text { Stat } & P \text {-value } \\\hline \text { Intercept } & 1.256 & 1.249 & 1.006 & 0.353 \\\hline \text { Scratch } & 0.185 & 0.032 & 5.714 & 0.001 \\\hline \text { Layer Pellets } & 0.295 & 0.026 & 11.539 & 0.000 \\\hline \text { Water } & 0.149 & 0.041 & 3.587 & 0.012 \\\hline\end{array}
Intercept
Scratch
Layer Pellets
Water
Coefficients
1.256
0.185
0.295
0.149
Std Error
1.249
0.032
0.026
0.041
t
Stat
1.006
5.714
11.539
3.587
P
-value
0.353
0.001
0.000
0.012
Question 43
Essay
Multiple regression was used to forecast success in college (GPA)based upon SAT score, high school GPA, and hours spent on-line. Use the regression output shown and comment on the overall fit of the model, the usefulness of each independent variable, and the value to an admissions department of using the model to make admission decisions. What is the model's forecast for an applicant having a high school GPA of 2.5 and an SAT score of 1000 that spends 20 hours a week on-line? What other variables do you feel would make good indicators of college GPA?
Regression Statistics
Multiple R
0.718
R Square
0.516
Adjusted R Square
0.273
Standard Error
0.339
Observations
10
ANOVA
df
SS
M S
F
Significance F
Regression
3
0.735
0.245
2.128
0.198
Residual
6
0.690
0.115
Total
9
1.425
Coefficients
Standard Error
Stat
P-value
Intercept
0.541
1.262
0.43
0.68
HS GPA
0.423
0.307
1.38
0.22
SAT
0.001
0.001
1.51
0.18
On-Line
0.010
0.017
0.61
0.57
\begin{array}{l}\text { Regression Statistics }\\\begin{array}{|l|c|c|c|c|c|}\hline \text { Multiple R } & 0.718 & & & \\\hline \text { R Square } & 0.516 & & & & \\\hline \text { Adjusted R Square } & 0.273 & & & & \\\hline \text { Standard Error } & 0.339 & & & & \\\hline \text { Observations } & 10 & & & & \\\hline & & & & & \\\hline \text { ANOVA } & & & & & \\\hline & \text {df} &\text {SS} &\text { M S }&\text { F} &\text {Significance F} \\\hline \text { Regression } & 3 & 0.735 & 0.245 & 2.128 & 0.198 \\\hline \text { Residual } & 6 & 0.690 & 0.115 & & \\\hline \text { Total } & 9 & 1.425 & & & \\\hline & & & & & \\\hline &\text { Coefficients } & \text { Standard Error } &\text { Stat } &\text { P-value } & \\\hline \text { Intercept } & 0.541 & 1.262 & 0.43 & 0.68 & \\\hline \text { HS GPA } & 0.423 & 0.307 & 1.38 & 0.22 & \\\hline \text { SAT } & 0.001 & 0.001 & 1.51 & 0.18 & \\\hline \text { On-Line } & 0.010 & 0.017 & 0.61 & 0.57 & \\\hline\end{array}\end{array}
Regression Statistics
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
ANOVA
Regression
Residual
Total
Intercept
HS GPA
SAT
On-Line
0.718
0.516
0.273
0.339
10
df
3
6
9
Coefficients
0.541
0.423
0.001
0.010
SS
0.735
0.690
1.425
Standard Error
1.262
0.307
0.001
0.017
M S
0.245
0.115
Stat
0.43
1.38
1.51
0.61
F
2.128
P-value
0.68
0.22
0.18
0.57
Significance F
0.198
Question 44
Multiple Choice
A poultry farmer that dabbles in statistics is interested in exploring the relationship between two types of feed (layer pellets and scratch) , water, and the output of his laying hens. For ten days he records the number of ounces of layer pellets and scratch the hens consume and the number of fluid ounces of water and tracks the number of eggs that are produced. What is his regression equation based on the data?
Scratch
Layer Pellets
Water
Eggs
48
29
36
24
44
27
34
22
41
22
31
20
42
21
32
20
48
23
34
22
44
28
34
23
42
22
37
21
41
28
33
22
42
22
31
20
47
29
37
24
\begin{array} { | c | c | c | c | } \hline \text { Scratch } & \text { Layer Pellets } & \text { Water } & \text { Eggs } \\\hline 48 & 29 & 36 & 24 \\\hline 44 & 27 & 34 & 22 \\\hline 41 & 22 & 31 & 20 \\\hline 42 & 21 & 32 & 20 \\\hline 48 & 23 & 34 & 22 \\\hline 44 & 28 & 34 & 23 \\\hline 42 & 22 & 37 & 21 \\\hline 41 & 28 & 33 & 22 \\\hline 42 & 22 & 31 & 20 \\\hline 47 & 29 & 37 & 24 \\\hline\end{array}
Scratch
48
44
41
42
48
44
42
41
42
47
Layer Pellets
29
27
22
21
23
28
22
28
22
29
Water
36
34
31
32
34
34
37
33
31
37
Eggs
24
22
20
20
22
23
21
22
20
24
Question 45
True/False
Multiple regression is used when the forecaster believes that more than one independent variable should be used to predict the variable of interest.
Question 46
Essay
Using the data in the table, first plot the data and comment on the appearance of the demand pattern. Then develop a forecast for periods 51-70 that fits the data.
Time
Output
Time
Output
Time
Output
Time
Output
1
12.5
14
16.4
27
−
19.2
40
11.3
2
14.8
15
11.7
28
10.6
41
11.1
3
15.3
16
11.1
29
16.8
42
52.5
4
15
17
11.9
30
22.5
43
11.3
5
11.5
18
11.3
31
15.5
44
−
19.3
6
11.6
19
13.7
32
11.7
45
12
7
12.8
20
16.3
33
11.9
46
15.5
8
51.9
21
13.1
34
13
47
20.5
9
11
22
10.8
35
11.9
48
16.5
10
−
19.7
23
10.3
36
13.5
49
12.5
11
11.9
24
11
37
16.5
50
10.5
12
17.8
25
51.4
38
14
13
20.3
26
11.6
39
11
\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { Time } & \text { Output } & \text { Time } & \text { Output } & \text { Time } & \text { Output } & \text { Time } & \text { Output } \\\hline 1 & 12.5 & 14 & 16.4 & 27 & -19.2 & 40 & 11.3 \\\hline 2 & 14.8 & 15 & 11.7 & 28 & 10.6 & 41 & 11.1 \\\hline 3 & 15.3 & 16 & 11.1 & 29 & 16.8 & 42 & 52.5 \\\hline 4 & 15 & 17 & 11.9 & 30 & 22.5 & 43 & 11.3 \\\hline 5 & 11.5 & 18 & 11.3 & 31 & 15.5 & 44 & -19.3 \\\hline 6 & 11.6 & 19 & 13.7 & 32 & 11.7 & 45 & 12 \\\hline 7 & 12.8 & 20 & 16.3 & 33 & 11.9 & 46 & 15.5 \\\hline 8 & 51.9 & 21 & 13.1 & 34 & 13 & 47 & 20.5 \\\hline 9 & 11 & 22 & 10.8 & 35 & 11.9 & 48 & 16.5 \\\hline 10 & -19.7 & 23 & 10.3 & 36 & 13.5 & 49 & 12.5 \\\hline 11 & 11.9 & 24 & 11 & 37 & 16.5 & 50 & 10.5 \\\hline 12 & 17.8 & 25 & 51.4 & 38 & 14 & & \\\hline 13 & 20.3 & 26 & 11.6 & 39 & 11 & &\\\hline\end{array}
Time
1
2
3
4
5
6
7
8
9
10
11
12
13
Output
12.5
14.8
15.3
15
11.5
11.6
12.8
51.9
11
−
19.7
11.9
17.8
20.3
Time
14
15
16
17
18
19
20
21
22
23
24
25
26
Output
16.4
11.7
11.1
11.9
11.3
13.7
16.3
13.1
10.8
10.3
11
51.4
11.6
Time
27
28
29
30
31
32
33
34
35
36
37
38
39
Output
−
19.2
10.6
16.8
22.5
15.5
11.7
11.9
13
11.9
13.5
16.5
14
11
Time
40
41
42
43
44
45
46
47
48
49
50
Output
11.3
11.1
52.5
11.3
−
19.3
12
15.5
20.5
16.5
12.5
10.5
Question 47
Short Answer
The ________ value for a regression or multiple regression model shows the percentage of variability in the dependent variable that is explained by the independent variable(s).
Question 48
Multiple Choice
A poultry farmer that dabbles in statistics is interested in exploring the relationship between two types of feed (layer pellets and scratch) , water, and the output of his laying hens. For ten days he records the number of ounces of layer pellets and scratch the hens consume and the number of fluid ounces of water and tracks the number of eggs that are produced. After running a multiple regression model, he obtains the following report. What is the best interpretation of these statistics? Regression Statistics
Multiple R
0.993633
R Square
0.987307
Adjusted R Square
0.98096
Standard Error
0.213764
Observations
10
\begin{array} { | l | c | } \hline \text { Multiple R } & 0.993633 \\\hline \text { R Square } & 0.987307 \\\hline \text { Adjusted R Square } & 0.98096 \\\hline \text { Standard Error } & 0.213764 \\\hline \text { Observations } & 10 \\\hline\end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.993633
0.987307
0.98096
0.213764
10
Question 49
Multiple Choice
As yet another earthquake rattled her china cabinet, the data scientist decided to test whether hydraulic fracturing (where water is injected into the Earth) truly was predictive of the number of earthquakes in the region. What is the slope of the regression equation based on the data?
Injections
Earthquakes
137
682
331
833
360
905
442
1008
478
1482
529
1742
\begin{array} { | c | c | } \hline \text { Injections } & \text { Earthquakes } \\\hline 137 & 682 \\\hline 331 & 833 \\\hline 360 & 905 \\\hline 442 & 1008 \\\hline 478 & 1482 \\\hline 529 & 1742 \\\hline\end{array}
Injections
137
331
360
442
478
529
Earthquakes
682
833
905
1008
1482
1742
Question 50
Multiple Choice
A well-educated lumberjack decides to use linear regression to predict the demand for firewood based on the ambient temperature. He has collected data on firewood sales and temperature for the last several days and has performed some preliminary calculations as shown in the table. What is his regression equation based on the data?
Temp
Ricks
Temp Squared
Temp *# Ricks
33
17
1089
561
19
32
361
608
34
20
1156
680
34
18
1156
612
20
33
400
660
24
30
576
720
17
34
289
578
30
25
900
750
38
16
1444
608
23
29
529
667
Sums
272
254
7900
6444
\begin{array} { | c | c | c | c | c | } \hline & \text { Temp } & \text { Ricks } & \text { Temp Squared } & \text { Temp *\# Ricks } \\\hline & 33 & 17 & 1089 & 561 \\\hline & 19 & 32 & 361 & 608 \\\hline & 34 & 20 & 1156 & 680 \\\hline & 34 & 18 & 1156 & 612 \\\hline & 20 & 33 & 400 & 660 \\\hline & 24 & 30 & 576 & 720 \\\hline & 17 & 34 & 289 & 578 \\\hline & 30 & 25 & 900 & 750 \\\hline & 38 & 16 & 1444 & 608 \\\hline & 23 & 29 & 529 & 667 \\\hline \text { Sums } & 272 & 254 & 7900 & 6444 \\\hline\end{array}
Sums
Temp
33
19
34
34
20
24
17
30
38
23
272
Ricks
17
32
20
18
33
30
34
25
16
29
254
Temp Squared
1089
361
1156
1156
400
576
289
900
1444
529
7900
Temp *# Ricks
561
608
680
612
660
720
578
750
608
667
6444
Question 51
Multiple Choice
As yet another earthquake rattled her china cabinet, the data scientist decided to test whether hydraulic fracturing (or fracking) truly was predictive of the number of earthquakes in the region. What proportion of the number of earthquakes is predicted by the number of water injections based on the available data?
Injections
Earthquakes
137
682
331
833
360
905
442
1008
478
1482
529
1742
\begin{array} { | c | c | } \hline \text { Injections } & \text { Earthquakes } \\\hline 137 & 682 \\\hline 331 & 833 \\\hline 360 & 905 \\\hline 442 & 1008 \\\hline 478 & 1482 \\\hline 529 & 1742 \\\hline\end{array}
Injections
137
331
360
442
478
529
Earthquakes
682
833
905
1008
1482
1742
Question 52
Essay
A counseling service records the number of calls to their hotline for the last year. Plot the data and determine which forecasting technique would be best among a moving average, weighted moving average, exponential smoothing, and regression line.
Month
Demand
Tanuary
111
February
127
March
146
April
159
May
165
Tune
165
July
178
August
182
September
191
October
208
November
223
December
228
\begin{array} { | l | c | } \hline { \text { Month } } & \text { Demand } \\\hline \text { Tanuary } & 111 \\\hline \text { February } & 127 \\\hline \text { March } & 146 \\\hline \text { April } & 159 \\\hline \text { May } & 165 \\\hline \text { Tune } & 165 \\\hline \text { July } & 178 \\\hline \text { August } & 182 \\\hline \text { September } & 191 \\\hline \text { October } & 208 \\\hline \text { November } & 223 \\\hline \text { December } & 228 \\\hline\end{array}
Month
Tanuary
February
March
April
May
Tune
July
August
September
October
November
December
Demand
111
127
146
159
165
165
178
182
191
208
223
228
Question 53
True/False
Demand was low two years ago but increased sharply last year thanks to an aggressive marketing campaign. A time series model that puts the greatest emphasis on the most recent period is probably the best choice to predict next year's demand.