Solved

Consider the Following Linear Program:
the Management Scientist Provided the Following

Question 59

Essay

Consider the following linear program:
The Management Scientist provided the following solution output:
OPTIMAL SOLUTION
Objective Function Value = 20.000
MIAX 3x1+4x2($3 x _ { 1 } + 4 x 2 ( \$ Profit ))
s.t.
x1+3x212x _ { 1 } + 3 x _ { 2 } \leq 12
2x1+x282 x _ { 1 } + x _ { 2 } \leq 8
x13x 1 \leq 3
x1,x20x _ { 1 } , x _ { 2 } \geq 0  Variable  Value  Reduced Cost X12.4000.000X23.2000.000\begin{array} { l l l } \text { Variable } & \text { Value } & \text { Reduced Cost } \\\mathrm { X } 1 & 2.400 & 0.000 \\\mathrm { X } 2 & 3.200 & 0.000\end{array} OBJECTIVE COEFFICIENT RANGES
 Constraint  Slack/Surplus  Dual Price 10.0001.00020.0001.00030.6000.000\begin{array} { l l l } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Price } \\1 & 0.000 & 1.000 \\2 & 0.000 & 1.000 \\3 & 0.600 & 0.000\end{array} RIGHT HAND SIDE RANGES
 Variable  Lower Limit  Current Value  Upper Limit  X1 1.3333.0008.000X21.5004.0009.000\begin{array} { l l l l } \text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\\text { X1 } & 1.333 & 3.000 & 8.000 \\\mathrm { X } 2 & 1.500 & 4.000 & 9.000\end{array}  Constraint  Lower Limit  Current Value  Upper Limit 19.00012.00024.00024.0008.0009.00032.4003.000 No Upper Limit \begin{array} { l l c c } \text { Constraint } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit } \\1 & 9.000 & 12.000 & 24.000 \\2 & 4.000 & 8.000 & 9.000 \\3 & 2.400 & 3.000 & \text { No Upper Limit }\end{array}
a.What is the optimal solution including the optimal value of the objective function?
b.Suppose the profit on x1 is increased to $7.Is the above solution still optimal? What is the value of the objective function when this unit profit is increased to $7?
c.If the unit profit on x2 was $10 instead of $4,would the optimal solution change?
d.If simultaneously the profit on x1 was raised to $5.5 and the profit on x2 was reduced to $3,would the current solution still remain optimal?

Correct Answer:

verifed

Verified

a. blured image and blured image, and blured image.
b. Optimal solution will...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents